Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38496601

RESUMO

Decreased functional connectivity between the striatum and frontal cortex is observed in individuals with alcohol use disorder (AUD), and predicts the probability of relapse in abstinent individuals with AUD. To further our understanding of how repeated alcohol (ethanol; EtOH) consumption impacts the corticostriatal circuit, extracellular electrophysiological recordings (local field potentials; LFPs) were gathered from the nucleus accumbens (NAc) and prefrontal cortex (PFC) of C57BL/6J mice voluntarily consuming EtOH or water using a 'drinking-in-the-dark' (DID) procedure. Following a three-day acclimation period wherein only water access was provided during DID, mice were given 15 consecutive days of access to EtOH. Each session consisted of a 30-minute baseline period where water was available and was followed immediately by a 2-hour period where sippers containing water were replaced with new sippers containing either unsweetened 20% (v/v) EtOH (days 4-18; DID) or water (days 1-3; acclimation). Our analyses focused primarily on theta coherence during bouts of drinking, as differences in this band are associated with several behavioral markers of AUD. Both sexes displayed decreases in theta coherence during the first day of binge EtOH consumption. However, only females displayed further decreases in theta coherence on the 14th day of EtOH access. No differences in theta coherence were observed between the first and final bout on any EtOH drinking days. These results provide additional support for decreases in the functional coupling of corticostriatal circuits as a consequence of alcohol consumption and suggests that female mice are uniquely vulnerable to these effects following repeated EtOH drinking.

2.
bioRxiv ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38370732

RESUMO

Frontloading is an alcohol drinking pattern where intake is skewed toward the onset of access. The goal of the current study was to identify brain regions involved in frontloading. Whole brain imaging was performed in 63 C57Bl/6J (32 female and 31 male) mice that underwent 8 days of binge drinking using the drinking-in-the-dark (DID) model. On days 1-7, three hours into the dark cycle, mice received 20% (v/v) alcohol or water for two hours. Intake was measured in 1-minute bins using volumetric sippers, which facilitated analyses of drinking patterns. On day 8 mice were perfused 80 minutes into the DID session and brains were extracted. Brains were then processed to stain for Fos protein using iDISCO+. Following light sheet imaging, ClearMap2.1 was used to register brains to the Allen Brain Atlas and detect Fos+ cells. For brain network analyses, day 8 drinking patterns were used to characterize mice as frontloaders or non-frontloaders using a recently developed change-point analysis. Based on this analysis the groups were female frontloaders (n = 20), female non-frontloaders (n = 2), male frontloaders (n = 13) and male non-frontloaders (n = 8). There were no differences in total alcohol intake in animals that frontloaded versus those that did not. Only two female mice were characterized as non-frontloaders, thus preventing brain network analysis of this group. Functional correlation matrices were calculated for each group from log10 Fos values. Euclidean distances were calculated from these R values and hierarchical clustering was used to determine modules (highly connected groups of brain regions). In males, alcohol access decreased modularity (3 modules in both frontloaders and non-frontloaders) as compared to water drinkers (7 modules). In females, an opposite effect was observed. Alcohol access (9 modules for frontloaders) increased modularity as compared to water drinkers (5 modules). These results suggest sex differences in how alcohol consumption reorganizes the functional architecture of neural networks. Next, key brain regions in each network were identified. Connector hubs, which primarily facilitate communication between modules, and provincial hubs, which facilitate communication within modules, were of specific interest for their important and differing roles. In males, 4 connector hubs and 17 provincial hubs were uniquely identified in frontloaders (i.e., were brain regions that did not have this status in male non-frontloaders or water drinkers). These represented a group of hindbrain regions (e.g., locus coeruleus and the pontine gray) functionally connected to striatal/cortical regions (e.g., cortical amygdalar area) by the paraventricular nucleus of the thalamus. In females, 16 connector and 17 provincial hubs were uniquely identified which were distributed across 8 of the 9 modules in the female frontloader alcohol drinker network. Only one brain region (the nucleus raphe pontis) was a connector hub in both sexes, suggesting that frontloading in males and females may be driven by different brain regions. In conclusion, alcohol consumption led to fewer, but more densely connected, groups of brain regions in males but not females, and recruited different hub brain regions between the sexes. These results suggest that alcohol frontloading leads to a reduction in network efficiency in male mice.

3.
Neuropharmacology ; 242: 109762, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37871677

RESUMO

A key facet of alcohol use disorder is continuing to drink alcohol despite negative consequences (so called "aversion-resistant drinking"). In this study, we sought to assess the degree to which head-fixed mice exhibit aversion-resistant drinking and to leverage behavioral analysis techniques available in head-fixture to relate non-consummatory behaviors to aversion-resistant drinking. We assessed aversion-resistant drinking in head-fixed female and male C57BL/6 J mice. We adulterated 20% (v/v) alcohol with varying concentrations of the bitter tastant quinine to measure the degree to which mice would continue to drink despite this aversive stimulus. We recorded high-resolution video of the mice during head-fixed drinking, tracked body parts with machine vision tools, and analyzed body movements in relation to consumption. Female and male head-fixed mice exhibited heterogenous levels of aversion-resistant drinking. Additionally, non-consummatory behaviors, such as paw movement and snout movement, were related to the intensity of aversion-resistant drinking. These studies demonstrate that head-fixed mice exhibit aversion-resistant drinking and that non-consummatory behaviors can be used to assess perceived aversiveness in this paradigm. Furthermore, these studies lay the groundwork for future experiments that will utilize advanced electrophysiological techniques to record from large populations of neurons during aversion-resistant drinking to understand the neurocomputational processes that drive this clinically relevant behavior. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".


Assuntos
Consumo de Bebidas Alcoólicas , Alcoolismo , Camundongos , Masculino , Feminino , Animais , Camundongos Endogâmicos C57BL , Consumo de Bebidas Alcoólicas/psicologia , Etanol/farmacologia , Quinina
4.
bioRxiv ; 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37873153

RESUMO

A key facet of alcohol use disorder is continuing to drink alcohol despite negative consequences (so called "aversion-resistant drinking"). In this study, we sought to assess the degree to which head-fixed mice exhibit aversion-resistant drinking and to leverage behavioral analysis techniques available in head-fixture to relate non-consummatory behaviors to aversion-resistant drinking. We assessed aversion-resistant drinking in head-fixed female and male C57BL/6J mice. We adulterated 20% (v/v) alcohol with varying concentrations of the bitter tastant quinine to measure the degree to which mice would continue to drink despite this aversive stimulus. We recorded high-resolution video of the mice during head-fixed drinking, tracked body parts with machine vision tools, and analyzed body movements in relation to consumption. Female and male head-fixed mice exhibited heterogenous levels of aversion-resistant drinking. Additionally, non-consummatory behaviors, such as paw movement and snout movement, were related to the intensity of aversion-resistant drinking. These studies demonstrate that head-fixed mice exhibit aversion-resistant drinking and that non-consummatory behaviors can be used to assess perceived aversiveness in this paradigm. Furthermore, these studies lay the groundwork for future experiments that will utilize advanced electrophysiological techniques to record from large populations of neurons during aversion-resistant drinking to understand the neurocomputational processes that drive this clinically relevant behavior.

5.
Alcohol Clin Exp Res ; 46(10): 1772-1782, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36239713

RESUMO

Front-loading is a drinking pattern in which alcohol intake is skewed toward the onset of reward access. This phenomenon has been reported across several different alcohol self-administration protocols in a wide variety of species, including humans. The hypothesis of the current review is that front-loading emerges in response to the rewarding effects of alcohol and can be used to measure the motivation to consume alcohol. Alternative or additional hypotheses that we consider and contrast with the main hypothesis are that: (1) front-loading is directed at overcoming behavioral and/or metabolic tolerance and (2) front-loading is driven by negative reinforcement. Evidence for each of these explanations is reviewed. We also consider how front-loading has been evaluated statistically in previous research and make recommendations for defining this intake pattern in future studies. Because front-loading may predict long-term maladaptive alcohol drinking patterns leading to the development of alcohol use disorder (AUD), several future directions are proposed to elucidate the relationship between front-loading and AUD.


Assuntos
Alcoolismo , Recompensa , Humanos , Consumo de Bebidas Alcoólicas/epidemiologia , Alcoolismo/epidemiologia , Etanol/farmacologia , Motivação
6.
Alcohol ; 97: 31-39, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34547429

RESUMO

BACKGROUND: Previous research has demonstrated the utility of subanesthetic doses of ketamine in decreasing binge (Drinking-in-the-Dark, or DID) 20% alcohol intake in female inbred (C57BL/6J) mice when administered 12 hours prior to alcohol access (Crowley et al., 2019). In the current study, we assess the efficacy of a similar ketamine pretreatment using male and female selectively bred, crossed High Alcohol Preferring (cHAP) mice, which also drink to intoxication, but are not inbred. We hypothesized that ketamine would decrease binge alcohol intake without impacting locomotor activity. METHODS AND RESULTS: Subjects were 28 adult cHAP mice. Mice first received a 2-week DID drinking history using 2-h/day alcohol access. On day 12, prior to ketamine treatment, the average blood ethanol concentration (BEC) was 130 mg/dL, confirming that mice reliably reached intoxicating BECs. On day 15, mice were given 0, 3, or 10 mg/kg of ketamine 12 hours prior to the DID session. Ketamine did not decrease total (2-h) alcohol consumption or locomotion. Interestingly, the 10 mg/kg dose of ketamine did alter the drinking pattern in male mice, decreasing front-loading for a single day. We opted to then increase the doses to 32 or 100 mg/kg (i.e., an anesthetic dose) two days after the initial treatment, keeping the saline control. Mice of both sexes decreased total binge alcohol intake at the 100 mg/kg dose only, but again, the effect only lasted one day. CONCLUSIONS: The current study found that cHAP mice reached more than double the BECs observed in C57BL/6J mice during DID, but did not respond to subanesthetic ketamine. Modest efficacy was found for ketamine pretreatment at anesthetic doses. Differences in findings may be due to differential intake during DID, or genetic differences between C57Bl/6J mice and cHAP mice. Drug efficacy in multiple models is important for discovering reliable pharmacotherapies for alcoholism.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas , Ketamina , Consumo de Bebidas Alcoólicas/tratamento farmacológico , Consumo de Bebidas Alcoólicas/genética , Animais , Consumo Excessivo de Bebidas Alcoólicas/tratamento farmacológico , Consumo Excessivo de Bebidas Alcoólicas/genética , Etanol , Feminino , Humanos , Ketamina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
Alcohol Clin Exp Res ; 44(9): 1717-1727, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32865852

RESUMO

BACKGROUND: Beyond yielding high blood ethanol (EtOH) concentrations (BECs), binge-drinking models allow examination of drinking patterns which may be associated with EtOH's rewarding effects, including front-loading and consummatory successive negative contrast (cSNC), a decrease in intake when only water is available to subjects expecting EtOH. The goals of the current study were to broaden our understanding of these reward-related behaviors during binge EtOH access in high alcohol-preferring (HAP) replicate lines (HAP2 and HAP3) of mice selectively bred to prefer alcohol. We hypothesized that both lines would show evidence of front-loading during binge EtOH access and that we would find a cSNC effect in groups where EtOH was replaced with water, as these results have been shown previously in HAP1 mice. METHODS: HAP replicate 2 and replicate 3 female and male mice were given 2 hours of EtOH or water access in the home cage for 15 consecutive days using "drinking in the dark" (DID) procedures. Mice received the same fluid (either 20% unsweetened EtOH or water) for the first 14 days. However, on the 15th day, half of the mice from these 2 groups were provided with the opposite assigned fluid (EtOH groups received water and vice versa). Intake was measured in 1-minute bins using specialized sipper tubes, which allowed within-session analyses of binge-drinking patterns. RESULTS: EtOH front-loading was observed in both replicates. HAP3 mice displayed front-loading on the first day of EtOH access, whereas front-loading developed following alcohol experience in HAP2 mice, which may suggest differences in initial sensitivity to EtOH reward. Consummatory SNC, which manifests as lower water intake in mice expecting EtOH as compared to mice expecting water, was observed in both replicates. CONCLUSIONS: These findings increase confidence that defined changes in home cage consummatory behavior are driven by the incentive value of EtOH. The presence of cSNC across HAP replicates indicates that this reaction to loss of reward is genetically mediated, which suggests that there is a biological mechanism that might be targeted.


Assuntos
Consumo de Bebidas Alcoólicas/fisiopatologia , Comportamento Animal , Consumo Excessivo de Bebidas Alcoólicas/fisiopatologia , Depressores do Sistema Nervoso Central/administração & dosagem , Comportamento de Ingestão de Líquido , Etanol/administração & dosagem , Recompensa , Animais , Água Potável , Feminino , Masculino , Camundongos , Camundongos Endogâmicos , Autoadministração
8.
Neurotoxicology ; 79: 58-66, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32220603

RESUMO

Multiple recent instances of nerve agent (NA) exposure in civilian populations have occurred, resulting in a variety of negative effects and lethality in both adult and pediatric populations. Seizures are a prominent effect of NAs that can result in neurological damage and contribute to their lethality. Current anticonvulsant treatments for NAs are approved for adults, but no approved pediatric treatments exist. Further, the vast majority of NA-related research in animals has been conducted in adult male subjects. There is a need for research that includes female and pediatric populations in testing. In this project, adult and pediatric male and female rats were challenged with sarin or VX and then treated with fosphenytoin, levetiracetam, or propofol. In this study, fosphenytoin and levetiracetam failed to terminate seizure activity when animals were treated 5 min after seizure onset. Propofol was effective, exhibiting high efficacy and potency for terminating seizure activity quickly in pediatric and adult animals, suggesting it may be an effective anticonvulsant for NA-induced seizures in pediatric populations.


Assuntos
Anticonvulsivantes/farmacologia , Encéfalo/efeitos dos fármacos , Levetiracetam/farmacologia , Fenitoína/análogos & derivados , Propofol/farmacologia , Estado Epiléptico/prevenção & controle , Fatores Etários , Animais , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Feminino , Masculino , Compostos Organotiofosforados , Fenitoína/farmacologia , Ratos Sprague-Dawley , Sarina , Fatores Sexuais , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/fisiopatologia
9.
Epilepsy Res ; 162: 106320, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32182542

RESUMO

PURPOSE: To develop and characterize a mouse model of spontaneous recurrent seizures following nerve agent-induced status epilepticus (SE) and test the efficacy of existing antiepileptic drugs. METHODS: SE was induced in telemeterized male C57Bl6/J mice by soman exposure, and electroencephalographic activity was recorded for 4-6 weeks. Mice were treated with antiepileptic drugs (levetiracetam, valproic acid, phenobarbital) or corresponding vehicles for 14 d after exposure, followed by 14 d of drug washout. Survival, body weight, seizure characteristics, and histopathology were used to characterize the acute and chronic effects of nerve agent exposure and to evaluate the efficacy of treatments in mitigating or preventing neurological effects. RESULTS: Spontaneous recurrent seizures manifested in all survivors, but the number and frequency of seizures varied considerably among mice. In untreated mice, seizures became longer over time. Moderate to severe histopathology was observed in the amygdala, piriform cortex, and CA1. Levetiracetam provided modest improvements in neurological parameters such as reduced spike rate and improved histopathology scores, whereas valproic acid and phenobarbital were largely ineffective. CONCLUSIONS: This model of post-SE spontaneous recurrent seizures differs from other experimental models in the brief latency to seizure development, the occurrence of seizures in 100 % of exposed animals, and the lack of damage to CA4/dentate gyrus. It may serve as a useful tool for rapidly and efficiently screening novel therapies that would be effective against severe epilepsy cases.


Assuntos
Anticonvulsivantes/uso terapêutico , Levetiracetam/uso terapêutico , Agentes Neurotóxicos/efeitos adversos , Fenobarbital/uso terapêutico , Soman/efeitos adversos , Estado Epiléptico/diagnóstico , Estado Epiléptico/tratamento farmacológico , Ácido Valproico/uso terapêutico , Animais , Modelos Animais de Doenças , Camundongos , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/fisiopatologia
10.
Epilepsia ; 60(2): 315-321, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30615805

RESUMO

OBJECTIVES: Children and adults are likely to be among the casualties in a civilian nerve agent exposure. This study evaluated the efficacy of valnoctamide (racemic-VCD), sec-butylpropylacetamide (racemic-SPD), and phenobarbital for stopping nerve agent seizures in both immature and adult rats. METHODS: Female and male postnatal day (PND) 21, 28, and 70 (adult) rats, previously implanted with electroencephalography (EEG) electrodes were exposed to seizure-inducing doses of the nerve agents sarin or VX and EEG was recorded continuously. Five minutes after seizure onset, animals were treated with SPD, VCD, or phenobarbital. The up-down method was used over successive animals to determine the anticonvulsant median effective dose (ED50 ) of the drugs. RESULTS: SPD-ED50 values in the VX model were the following: PND21, 53 mg/kg (male) and 48 mg/kg (female); PND28, 108 mg/kg (male) and 43 mg/kg (female); and PND70, 101 mg/kg (male) and 40 mg/kg (female). SPD-ED50 values in the sarin model were the following: PND21, 44 mg/kg (male) and 28 mg/kg (female); PND28, 79 mg/kg (male) and 34 mg/kg (female); and PND70, 53 mg/kg (male) and 53 mg/kg (female). VCD-ED50 values in the VX model were the following: PND21, 34 mg/kg (male) and 43 mg/kg (female); PND28, 165 mg/kg (male) and 59 mg/kg (female); and PND70, 87 mg/kg (male) and 91 mg/kg (female). VCD-ED50 values in the sarin model were the following: PND21, 45 mg/kg (male), 48 mg/kg (female); PND28, 152 mg/kg (male) 79 mg/kg (female); and PND70, 97 mg/kg (male) 79 mg/kg (female). Phenobarbital-ED50 values in the VX model were the following: PND21, 43 mg/kg (male) and 18 mg/kg (female); PND28, 48 mg/kg (male) and 97 mg/kg (female). Phenobarbital-ED50 values in the sarin model were the following: PND21, 32 mg/kg (male) and 32 mg/kg (female); PND28, 58 mg/kg (male) and 97 mg/kg (female); and PND70, 65 mg/kg (female). SIGNIFICANCE: SPD and VCD demonstrated anticonvulsant activity in both immature and adult rats in the sarin- and VX-induced status epilepticus models. Phenobarbital was effective in immature rats, whereas in adult rats, higher doses were required that were accompanied by toxicity. Overall, significantly less drug was required to stop seizures in PND21 animals than in the older animals, and overall, males required higher amounts of drug than females.


Assuntos
Amidas/farmacologia , Convulsões/tratamento farmacológico , Estado Epiléptico/tratamento farmacológico , Ácido Valproico/análogos & derivados , Animais , Anticonvulsivantes/uso terapêutico , Criança , Modelos Animais de Doenças , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Agentes Neurotóxicos/farmacologia , Fenobarbital/uso terapêutico , Ratos , Ácido Valproico/farmacologia
11.
Toxicology ; 410: 10-15, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30172647

RESUMO

Genetics likely play a role in various responses to nerve agent (NA) exposure, as genetic background plays an important role in behavioral, neurological, and physiological responses. This study uses different mouse strains to identify if mouse strain differences in sarin exposure exist. In Experiment 1, basal levels of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and carboxylesterase (CE) were measured in different strains of naïve mice to account for potential pharmacokinetic determinants of individual differences. In Experiment 2, median lethal dose (MLD) levels were estimated in 8 inbred mouse strains following subcutaneous (s.c.) administration of sarin. Few strain or sex differences in esterase activity levels were observed, with the exception of erythrocyte AChE activity in the C57BL/6J strain. Both sex and strain differences in toxicity were observed, with the most resistant strains being the BALB/cByJ and FVB/NJ strains and the most sensitive strain being the DBA/2J strain. These findings can be expanded to explore pathways involved in NA response, which may provide an avenue to develop therapeutics for preventing and treating the damaging effects of NA exposure.


Assuntos
Substâncias para a Guerra Química/toxicidade , Esterases/efeitos dos fármacos , Esterases/metabolismo , Camundongos Endogâmicos , Agentes Neurotóxicos/toxicidade , Sarina/toxicidade , Acetilcolinesterase/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Animais , Butirilcolinesterase/efeitos dos fármacos , Butirilcolinesterase/metabolismo , Hidrolases de Éster Carboxílico/efeitos dos fármacos , Hidrolases de Éster Carboxílico/metabolismo , Inibidores da Colinesterase/toxicidade , Eritrócitos/efeitos dos fármacos , Eritrócitos/enzimologia , Feminino , Injeções Subcutâneas , Dose Letal Mediana , Masculino , Camundongos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...